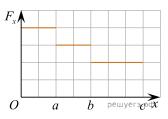
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

А. Перемещение Б. Работа В. Сила	1) скалярная величина 2) векторная величина
---	---

1) A1 B1 B2

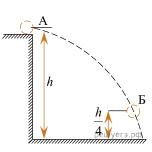

2) А1 Б2 В1

3) А2 Б1 В1

4) A2 B1 B2

5) А2 Б2 В1

- 2. Мальчик крикнул, и эхо, отражённое от преграды, возвратилось к нему обратно через промежуток времени $\Delta t = 1,2$ с. Если модуль скорости звука в воздухе $\upsilon = 0.330$ км/с, то расстояние L от мальчика до преграды равно:
 - 1) 0.66 км
- 2) 0.51 км
- 3) 0.40 км
- 4) 0.33 км
- 5) 0.20 км
- 3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=30$ км/ч, второй — $<v_2>=33$ км/ч, третий — $<v_3>=15$ км/ ч, то всю трассу велосипедист проехал со средней скоростью <υ> пути, равной:
 - 1) 26 км/ч
- 2) 25 км/ч
- 3) 24 км/ч
- 4) 23 km/y
- 5) 22 км/ч
- **4.** Тело двигалось вдоль оси Ox под действием силы \vec{F} . График зависимости проекции силы F_x на ось Ox от координаты x тела представлен на рисунке. На участках (O; a), (a; b),(b; c) сила совершила работу A_{0a}, A_{ab}, A_{bc} соответственно. Для этих работ справедливо соотношение:

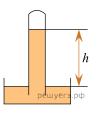

1)
$$A_{0a} = A_{ab} < A_{bc}$$

2)
$$A_{0a} < A_{bc} < A_{a}$$

1)
$$A_{0a} = A_{ab} < A_{bc}$$
 2) $A_{0a} < A_{bc} < A_{ab}$ 3) $A_{ab} = A_{bc} < A_{0a}$

4)
$$A_{ab} < A_{bc} < A_{0a}$$
 5) $A_{bc} < A_{ab} < A_{0a}$

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке Б полная механическая энергия камня $W = 8.0 \, \text{Дж}$, то в точке A после броска она равна:



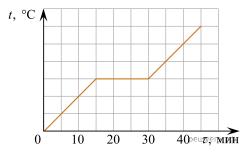
1) 0 Дж 2) 4.0 Дж 3) 8.0 Дж

4) 12.0 Дж

5) 16,0 Дж

6. Запаянную с одного конца трубку наполнили соляным раствором ($\rho = 1, 2 \cdot 10^3 \frac{\text{K}\Gamma}{\text{M}^3}$), а затем погрузили открытым концом в широкий сосуд с соляным раствором (см.рис.). Если высота столба соляного раствора h =8.50 м. то атмосферное давление p равно:

1) 98,0 kΠa


2) 99,0 kΠa

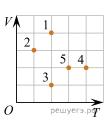
3) 100 κΠa

4) 101 κΠa

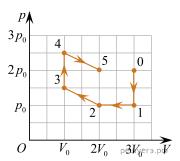
5) 102 κΠa

7. В момент времени $\tau_0 = 0$ мин жидкое вешество начали нагревать при постоянном давлении, ежесекундно сообщая веществу одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени т. Две трети массы вещества испарилось к моменту времени τ_1 , равно-MV:

1) 5 мин


2) 10 мин

3) 20 мин


4) 25 мин

5) 45 MUH

8. На V-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

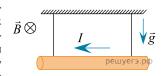
- 1) 1 2) 2 3) 3 4) 4 5) 5
- **9.** На p V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Положительную работу A газ совершил на участке:

- 1) $0 \rightarrow 1$ 2) $1 \rightarrow 2$
- 3) $2 \rightarrow 3$
- 4) 3→4
- 5) 4→5

10. На рисунке приведено условное обозначение:

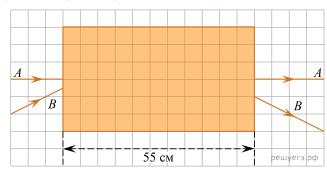
- 1) колебательного контура 2) конденсатора 4) катушки индуктивности
- 3) гальванического элемента5) резистора
- **11.** Диаметр велосипедного колеса d=70 см, число зубьев ведущей звездочки $N_1=48$, ведомой $N_2=14$ (см. рис.). Если велосипедист равномерно крутит педали с частотой v=84 об/мин, то модуль скорости V велосипеда равен ... **км/ч**.

12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой m=

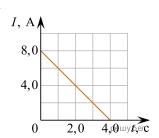

30 кг, площадь основания которого $S=0,070 \text{ м}^2$. Если давление, оказываемое чемоданом на пол, p=3,0 кПа, то модуль ускорения a лифта равен ... $\frac{\text{ДМ}}{c^2}$.

- 13. Однородная льдина $\left(\rho_1=900\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ в форме прямоугольного параллелепипеда толщиной h=16 см плавает в воде $\left(\rho_2=1000\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. На льдину положили камень $\left(\rho_3=2300\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ массой m=9,2 кг. Если камень погрузился в воду на половину своего объёма, а льдина погрузилась в воду полностью, то площадь S основания льдины равна ... дм 2 .
- **14.** Два тела массами $m_1 = 2,00$ кг и $m_2 = 1,50$ кг, модули скоростей которых одинаковы ($v_1 = v_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 5,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **15.** Идеальный одноатомный газ, начальный объем которого $V_1=1~{\rm m}^3$, а количество вещества остается постоянным, находится под давлением p_1 . Газ нагревают сначала изобарно до объема $V_2=3~{\rm m}^3$, а затем продолжают нагревание при постоянном объеме до давления $p_2=5\cdot 10^5$. Если количество теплоты, полученное газом при переходе из начального состояния в конечное, $Q=2,35~{\rm MДж}$, то его давление p_1 в начальном состоянии равно ... к**Па**.
- **16.** Вода $\left(\rho=1,0\cdot10^3\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3},c=4,2\cdot10^3\ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^{\circ}\mathrm{C}$ до температуры $t_2=62^{\circ}\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов, то на высоту $h=60\ \mathrm{M}$ можно поднять материалы, максимальная масса m которых равна ... кг.
- 17. Температура нагревателя идеального теплового двигателя на $\Delta t = 300^{\circ} \mathrm{C}$ больше температуры холодильника. Если температура термический коэффициент полезного действия двигателя $\eta = 40,0\%$, то температура t нагревателя равна ... °C.
- **18.** Если работа выхода электрона с поверхности вольфрама $A_{\text{вых}} = 4,5$ эВ составляет $n = \frac{1}{5}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.

19. На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q=32 нКл. Точечный заряд q=4,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=3,5$ см и $r_2=5,9$ см, то работа, совершённая электростатическим полем заряда Q, равна ... мкДж.



20. В однородном магнитном поле, модуль магнитной индукции которого B=0,20 Тл, на двух невесомых нерастяжимых нитях подвешен в горизонтальном положении прямой проводник (см.рис.). Линии индукции магнитного поля горизонтальны и перпендикулярны проводнику. После того как по проводнику пошёл ток I=5,0 А, модуль силы натяжения $F_{\rm H}$ каждой нити



увеличился в три раза. Если длина проводника l = 0.60 м, то его масса m равна ... Γ .

- **21.** К источнику переменного тока, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=560\,$ Вт. Если действующее значение напряжения на плитке $U_{\rm д}=72\,$ В, то амплитудное значение силы тока I_0 в сети равно ... **A**.
- **22.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=546$ нм дифракционный максимум четвертого порядка ($m_1=4$) наблюдается под углом θ , то максимум пятого порядка ($m_2=5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- 27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС \mathcal{E}_{c} самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.